Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.
نویسنده
چکیده
Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.
منابع مشابه
Effect of Alkyl Chain Length on Adsorption Behavior and Corrosion Inhibition of Imidazoline Inhibitors
Inhibition performances of imidazoline derivatives with different alkyl chain length for carbon steel in H2S acid solutions has been studied by polarization curves, AC impedance measurements, current transient, Atomic Force Microscopy (AFM) and Density Functional Theory (DFT) techniques. Results showed that the inhibition occurs through adsorption of the inhibitors molecules ...
متن کاملComputational Evaluation of Corrosion Inhibition of Four Quinoline Derivatives on Carbon Steel in Aqueous Phase
Molecular Dynamics (MD) simulation and Density Functional Theory (DFT) methods have been used to evaluate the efficiency of four quinoline derivatives on corrosion inhibition in the aqueous phase. Some quantum chemical parameters such as hardness (η), electrophilicity (w), polarizability (a), energy of the highest occupied molecular orbital (EHOMO), energy of th...
متن کاملElectrosynthesis, Characterization and Corrosion Inhibition Study of DBSA-doped Polyaniline Coating on 310 Stainless Steel
The synthesis of polyaniline doped with dodecylbenzene sulphonic acid (Pani-DBSA) coatings on 310 stainless steel (310 SS) surfaces has been investigated by using the galvanostatic method. The synthesized coatings were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible absorption spectrometry and Scanning Electron Microscopy (SEM...
متن کاملInvestigation of Corrosion Inhibition of Vitamins B1 and C on Mild Steel in 0.5 M HCl Solution: Experimental and Computational Approach
Corrosion inhibition behavior of Ascorbic acid (AA) vitamin C and Thiamine (Th) vitamin B1 on mild steel corrosion in 0.5 M HCl was investigated at various immersion times. The electrochemical characteristics of mild steel in absence and presence of the inhibitors were verified by the cyclic voltammetry method. The protective properties of the passive film were acquired by electrochemical imped...
متن کاملSYNTHESIS AND STUDY OF CORROSION PERFORMANCE OF EPOXY COATING CONTAINING MULTI-WALLED CARBON NANOTUBE/ POLY ORTHO AMINOPHENOL NANOCOMPOSITE
The epoxy coatings containing multi-walled carbon nanotube/ poly ortho aminophenol nanocomposite were prepared and used as anticorrosive coatings. The nanocomposites with different contents of carbon nanotube were synthesized in a solution of sodium dodecyl sulfate and ammonium peroxy disulfate as a surfactant and an oxidant, respectively. The morphology and structural properties were confirmed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 180 شماره
صفحات -
تاریخ انتشار 2015